
A Genetic Programming Approach to
Automated Software Repair

Stephanie Forrest
∗

Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131
forrest@cs.unm.edu

ThanhVu Nguyen
Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131
tnguyen@cs.unm.edu

Westley Weimer
Computer Science Dept.

University of Virginia
Charlottesville, VA 22904
weimer@virginia.edu

Claire Le Goues
Computer Science Dept.

University of Virginia
Charlottesville, VA 22904
legoues@virginia.edu

ABSTRACT
Genetic programming is combined with program analysis methods
to repair bugs in off-the-shelf legacy C programs. Fitness is de-
fined using negative test cases that exercise the bug to be repaired
and positive test cases that encode program requirements. Once a
successful repair is discovered, structural differencing algorithms
and delta debugging methods are used to minimize its size. Several
modifications to the GP technique contribute to its success: (1) ge-
netic operations are localized to the nodes along the execution path
of the negative test case; (2) high-level statements are represented
as single nodes in the program tree; (3) genetic operators use exist-
ing code in other parts of the program, so new code does not need to
be invented. The paper describes the method, reviews earlier exper-
iments that repaired 11 bugs in over 60,000 lines of code, reports
results on new bug repairs, and describes experiments that analyze
the performance and efficacy of the evolutionary components of the
algorithm.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging; D.3.1b
[Programming Languages]: Syntax; F.2.2 [Artificial Intelligence]:
Search

General Terms
Algorithms

Keywords
Software repair, genetic programming, software engineering

∗Also at the Santa Fe Institute, Santa Fe, NM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

1. INTRODUCTION
Despite its many successes Genetic Programming (GP) has not

replaced human programmers, who still develop, maintain, and re-
pair computer programs largely by hand. In this paper, we describe
how GP can be combined with program analysis methods to repair
bugs in off-the-shelf legacy C programs. We assume that we have
access to the C source code, a negative test case that exercises the
fault to be repaired, and several positive test cases that encode the
required behavior of the program.

With these inputs in hand, a modified version of GP evolves a
candidate repair that avoids failing the negative test case while still
passing the positive ones. We then use structural differencing [2]
and delta debugging [24] techniques to minimize the repair, miti-
gating code bloat. The program is represented as an abstract syntax
tree (AST), in which each node corresponds to an executable state-
ment or control-flow structure in the program. The genetic opera-
tors are restricted to AST nodes on the execution path that produces
the faulty behavior. The GP problem is thus reduced: Instead of
searching through the space of all nodes in the AST, the algorithm
searches through the much smaller space of nodes representing one
execution path. In practice, the faulty execution path has an order
of magnitude fewer unique nodes than the AST.

The primary contribution of the paper is a demonstration of GP
successfully applied to the problem of software repair. To accom-
plish this, we introduce the idea of localizing genetic operations to
the buggy execution path. We also report results analyzing how the
GP search proceeds and documenting the contribution of various
parts of the algorithm.

The paper is organized as follows. Section 2 describes the tech-
nical approach. Section 3.1 illustrates the approach on a recent bug
in the Microsoft’s Zune program, and in Section 3.2 we summarize
earlier results obtained on multiple programs. Next, we report re-
sults that explore GP’s performance, including the role of crossover
(Section 3.3), the effect of adding test cases to the fitness function
(Section 3.4), and the success of the different mutation operations
in the search. Section 3.6 address the question of scalability by
comparing GP search time with execution path length. Finally, we
review related work and discuss some of the implications and future
prospects for this line of inquiry in Section 4 and Section 5.

2. TECHNICAL APPROACH
GP is used to generate and evaluate program variants. The vari-

ants, or individuals, are AST representations of C programs. Muta-
tion and crossover operators are applied to statements that lie along
a weighted execution path through the AST. We find this execution
path by running an instrumented version of the program on an input
that exercises a bug in the code. The first generation is created by
making multiple identical copies of the original program with the
bug intact, and then applying mutation to each individual before
proceeding with fitness evaluation.

Our GP follows the traditional algorithmic structure but uses a
nontraditional form of crossover and strong elitism. It maintains a
population of individuals (programs), selects a subset of the pop-
ulation based on fitness, and modifies the programs with mutation
and crossover. Selection deletes the bottom-ranked 50% of the pop-
ulation (20 individuals in our standard runs)..1 The new population
is formed by first crossing over the remaining high 20 individuals
with the original program. We refer to this as crossing back. Each
such crossover produces a single child. We add the 20 children to
the population and retain the 20 parents unchanged, bringing the
population total back to 40. Finally, all surviving individuals are
mutated. The program terminates either when it finds a candidate
solution that passes all its positive and negative test cases, or when
it exceeds a preset number of generations.

The first variant to pass all test cases is the primary repair. It
will likely contain irrelevant changes, so we use program analysis
methods to minimize the repair, producing the minimized repair.

2.1 Representation
There are a number of commonly accepted structures for repre-

senting programs, such as control flow graphs (CFGs) and abstract
syntax trees (ASTs) [1]. We chose ASTs because they are efficient2

and can losslessly represent all structured programs. Moreover, tree
operations are well-studied in genetic programming.

ASTs can be expressed at multiple levels of abstraction or granu-
larity, and our genotype representation reflects the tradeoff between
expressive power and scalability. In particular, C programs contain
both statements, such as the conditional statement
"if (!p) { x = (1-2)*3; }," and expressions, such as
"(1-2)” or “(!p)”. For example, the atris program described
in Section 3.2 is 21553 lines of C code, but its AST contains 32474
expression nodes and 8068 statement nodes. For scalability, we
treat the statement as the basic unit, or gene. Thus we never mod-
ify “(!p)” into “(p || error_flag)” because that would in-
volve changing the structure of an expression. We might, however,
delete the entire “if . . . ” statement or replace it with a function
call statement.

A few details remain. First, note that when the program uses
structured control flow, statements can contain other statements.
For example, the “if . . . ” statement above contains the statement
“x = (1-2)*3;” as its then-branch. If the conditional state-
ment is deleted from the AST, the contained assignment statement,
which is in its subtree, will necessarily be removed as well. Second,
we never directly modify low-level control-flow directives such as
break, continue or goto, although statements around them
can be modified. For the atris program, this reduces the num-
ber of statement nodes of interest from 8068 to 6470. Third, we
assume that software defects are local, rather than spanning an en-
1We obtained results qualitatively similar to those reported here with tour-
nament selection.
2In the worst case, any context-free grammar can be parsed into an AST in
O(n3) time. In practice, languages such as C can be parsed in near-linear
time using optimized techniques such as LALR(1). [1]

tire program. Thus, we consider only code that is visited when the
bug is exercised, ignoring the rest of the program. Finally, we bias
mutation and crossover towards statement nodes that were visited
when running the negative test cases but not visited when running
the positive test cases (see Section 2.2). In the atris program,
only 34 statements meet those requirements. We find this informa-
tion by assigning each statement a unique ID and instrumenting the
program to print out the ID of each statement visited [18].

Informally, this example demonstrates why our approach scales
to real-world program sizes: rather than considering all 32474 ex-
pression nodes in atris, the GP search is localized to the 34 state-
ment nodes that are likely to matter, a reduction of three orders of
magnitude.

Each genotype is a pair containing:

1. An abstract syntax tree (AST) including all of the statements
s in the program.

2. A weighted path through that program. The weighted path
is a list of pairs 〈s, ws〉, each containing a statement in the
program visited on the negative test case and the associated
weight for that statement.

The default path weight of a statement is 1.0 if it is visited in the
negative test case but not on any positive test case. Its weight is
0.1 if it is visited on both positive and negative test cases. All other
statements have weight 0.0. The weight represents an initial guess
of how relevant the statement is to the bug.

The weighted path length is the weighted sum of statement weights
on the weighted path. This scalar gives a rough estimate of the
complexity of the search space and is correlated with algorithm
performance (Section 3.6).

Finally, there are a number of other C program components not
touched by the GP operators, for example, datatype definitions and
local and global variable declarations. Because these are never on
the weighted path, they are never modified by mutation or crossover.
This potentially limits the expressive power of the repairs: If the
best fix for a bug is to change a data structure definition, GP will
not discover that fix. In practice, this has not been problem. For
example, the heap-based buffer overflow defect in nullhttpd
(Section 3.2) can be repaired either by reordering the data struc-
ture fields, or by changing the program control flow; our technique
finds the second repair. Ignoring variable declarations, on the other
hand, can cause problems with ill-formed variants. Because of the
constraints on mutation and crossover, GP never generates syntac-
tically ill-formed programs (e.g., it will never generate unbalanced
parentheses). However, it could move the use of a variable outside
of its declared scope, which leads to a semantically ill-formed vari-
ant that does not type check and thus does not compile. We return
to this issue in Section 3.2.

2.2 Fitness Function
The fitness of an individual in a program repair task should as-

sess how well the program avoids the program bug while still doing
“everything else it is supposed to do.” We use test cases to measure
fitness. For our purposes, a test case consists of input to the pro-
gram (e.g., command-line arguments, data files read from the disk,
etc.) and an oracle comparator function that encodes the desired
response [11]. A program P is said to pass a test case T iff the
oracle is satisfied with the program’s output: Toracle(P (Tinput)) =
pass . Such testing accounts for as much as 45% of total software
lifecycle cost [19], and finding a set of test cases that covers all
parts of the program and all required behavior is a difficult but well-
studied problem in the field of software engineering.

We call the defect-demonstrating input and its anomalous output
(i.e., the bug we want to fix) the negative test case. We use a subset
of the program’s existing test inputs and oracles to encode the core
functionalities of the program, and call them the positive test cases.
Many techniques are available for identifying bugs in programs,
both statically (e.g., [7, 16]) and dynamically (e.g., [14, 17, 20]).
We assume that a bug has been identified and associated with at
least one negative test case.

The fitness function takes a genotype, compiles the internal rep-
resentation into an executable program and runs it against the set of
positive and negative test cases. It returns the weighted sum of the
test cases passed. Programs that do not compile, as well as those
whose runtimes exceed a predetermined threshold (currently five
seconds for most programs), are assigned fitness zero.

2.3 Genetic Operators
Because the primitive unit (gene) is the statement, mutation is

more complicated than a simple bit flip. It consists either of a dele-
tion (the entire statement and all its sub-statements are deleted), an
insertion (another statement is inserted after it), or a swap of two
statements on the weighted path. Only statements on the weighted
path are subject to the mutation operator. Each location on the
weighted path is considered for mutation with probability equal to
its path weight.

Although genetic operators are focused on the weighted path,
the rest of the program remains important. We use the term C-Bank
(for code bank) to refer to the set of all statements of interest in the
program, even those not on the weighted path. Statements in the
C-Bank are weighted equally. In the atris example described in
Section 2.1, there are 34 statements in the weighted path and 6470
statements in the code bank.

Each statement s in the negative path is mutated with probabil-
ity ms = pm × ws, where ws is the weight assigned to s in the
weighted path (and is zero for statements not on the weighted path),
and 0.0 < pm < 1.0 is the global mutation rate.

Once it is determined that a mutation will occur at a given loca-
tion, a mutation type is chosen uniformly at random: delete (s ←
{}), swap (s← {s′}; s′ ← {s} : s, s′ in weighted path) and insert
a random statement s′ from the C-Bank (s ← {s; s′; }). Note that
a typical mutation step might contain multiple mutation operations
(see Table 2).

The crossover rate is 1.0—during each generation, every surviv-
ing variant undergoes crossover. The crossover operator is unusual
in two ways. First, an individual is always crossed back with the
original parent program. Second, one-point crossover is used to
determine the crossover point, and then a biased coin is tossed for
each gene in the first segment to determine which genes are ac-
tually swapped. A location is identified in the weighted path (the
crossover point), which partitions the path into two segments. This
point is chosen uniformly at random. The existing variant V is
then crossed over with the original program O to produce two child
variants. The variant V can be viewed as Pre ◦ V1 ◦ V2 ◦ Post ,
where Pre and Post are pre- and post-amble code in the pro-
gram but not in the weighted path, and V1 and V2 are the two
parts of the weighted path, split at the crossover point. Similarly,
O = Pre ◦O1 ◦O2 ◦ Post . This produces Pre ◦O1 ◦ V2 ◦ Post
and Pre ◦ V1 ◦O2 ◦Post , and both these offspring are copied into
the next generation. All statements in Pre and Post are left un-
touched. When constructing O1 ◦ V2 from V1 ◦ V2 and the original
program, each statement s ∈ V1 is swapped with its counterpart in
the original program with probability equal to its weight.3

This is a nonstandard version of crossover, and in Section 3.3, we
3Because of insertions and deletions, some of these statements may be

compare its performance to a more traditional implementation. The
intuition behind crossing back to the original program is similar to
the intuition behind elitist strategies — some mutations could cause
irretrievable damage, and this provides a way to preserve the origi-
nal functionality of the program. We use the weighted path to bias
the probability of exchanging a single gene (statement) because we
most want to change statements with higher weights. This further
protects the positive functionality from damage.

2.4 Minimizing the repair
The search terminates when GP discovers a primary repair that

passes both the positive and the negative test cases. However, the
primary repair typically contains at least an order-of-magnitude
more changes than are necessary to repair the program. For exam-
ple, GP might produce dead code (x=3; x=5;) or calls to irrel-
evant functions. We use program analysis techniques to minimize
the primary repair to produce the final repair.

Using tree-structured differencing [2], we view the primary re-
pair as a set of changes against the original program. Each change
is a tree-structured operation such as “take the subtree of the AST
rooted at position 4 and move it so that it becomes the 5th child of
the node at position 6”. Applying all of the changes to the original
program produces the primary repair, while applying none of the
changes leaves the original program. We seek to find a small sub-
set of changes that produces a program that still passes all of the
test cases.

Let Cp = {c1, . . . , cn} be the set of changes associated with
the primary repair. Let Test(C) = 1 if the program obtained
by applying the changes in C to the original program passes all
positive and negative test cases; let Test(C) = 0 otherwise. We
have Test(Cp) = 1 and Test({}) = 0 (i.e., the primary re-
pair passes all test cases, the original program does not). A one-
minimal subset C ⊆ Cp is a set such that Test(C) = 1 and
∀ci ∈ C. Test(C \ {ci}) = 0. That is, a one-minimal subset
produces a program that passes all test cases, but dropping any ad-
ditional elements causes the program to fail at least one test case.

We use delta debugging [24] to efficiently compute a one-minimal
subset of changes from the primary repair. Checking if a set is valid
involves a fitness evaluation (a call to Test). Delta debugging is
conceptually similar to binary search, but it returns a set instead of
a single number. Intuitively, starting with {c1, . . . , cn}, it might
first check {c1, . . . , cn/2}: if that half of the changes is sufficient
to pass the Test , then {c1+n/2, . . . , cn} can be discarded. When
no more subsets of size n/2 can be removed, subsets of size n/4
are considered for removal, until eventually subsets of size 1 (i.e.,
individual changes) are tested. Finding the minimal valid set by
brute force potentially involves O(2n) evaluations; delta debug-
ging is O(n2) in the worst case [25, Proposition 12]. However, we
typically observe a linear number of tests in our experiments. This
smaller set of changes is presented to the developers as the final
repair in the form of a standard program patch.

3. RESULTS
In this section, we first illustrate how GP repairs bugs using the

well-known recent bug in Microsoft’s Zune audio player [8]. Next,
we summarize earlier results on repairs in ten additional programs
totaling over 60,000 lines of code. We then report experimental re-
sults that explore various aspects of GP performance, including the
role of crossover, the effect of varying the number of test cases in
the fitness function, the relative importance of the different genetic
operations, and the effect of path length on time to solution.

empty.

In all of the experiments, a standard trial uses the following
setup. The population size is 40, and GP runs for a maximum of 20
generations. For the first ten generations, the global mutation rate
is pm = 0.06, and statements visited on both the positive and neg-
ative test cases are given a weight of 0.01. If no primary repair is
found, the current population is discarded, these rates are adjusted
to 0.03 and 0.00 respectively, and the GP is run for ten additional
generations.

The trial terminates if it discovers an initial repair. We performed
100 trials for each program. We memoize fitnesses such that two
individuals with different ASTs but the same source code are not
evaluated twice. Similarly, individuals that are copied to the next
generation without change are not reevaluated.

3.1 Example: Repairing the Zune Bug
On December 31st, 2008 a widely reported bug was discovered

in the Microsoft Zune media players, causing them to freeze up [8].
The fault was a bug in the following program fragment:4

1 void zunebug(int days) {
2 int year = 1980;
3 while (days > 365) {
4 if (isLeapYear(year)){
5 if (days > 366) {
6 days -= 366;
7 year += 1;
8 }
9 else {
10 }
11 }
12 else {
13 days -= 365;
14 year += 1;
15 }
16 }
17 printf("current year is %d\n", year);
18 }

When the value of the input days is the last day of a leap year
(such as 10593, which corresponds to Dec 31, 2008), the program
enters an infinite loop on lines 3–16.

We now walk through the evolution of a repair for this program.
We first produce its AST and determine the weighted path, us-
ing line numbers to indicate statement IDs. The positive test case
zunebug(1000) visits lines 1–8, 11–18. The negative test case
zunebug(10593) visits lines 1–16, and then repeats lines 3, 4,
8, and 11 infinitely.

For the purposes of this example, our negative test cases consist
of the inputs 366 and 10593, which cause an infinite loop (instead
of the correct values, 1980 and 2008), and our positive test cases
are the inputs 1000, 2000, 3000, 4000, and 5000, which produce
the correct outputs 1982, 1985, 1988, 1990 and 1993.

Here, we focus on one variant, V . V is initialized to be identical
to the original program. In Generation 1, two operations mutate V :
the conditional statement “if (days > 366) { days -=
366; year +=1; }” is inserted between lines 6 and 7 of the
original program; and the statement “days -= 366” is inserted
between lines 10 and 11. Note that the first insertion includes not
just the if but its entire subtree. This produces the following code
fragment:

5 if (days > 366) {
6 days -= 366;

4Downloaded from http://pastie.org/349916 (Jan. 2009). Note that the
original program source code does not make lines 9–10 explicit: the AST
represents missing blocks, such as those in if statements without else
clauses, as blocks containing zero statements.

7 if (days > 366){ // insert #1
8 days -= 366; // insert #1
9 year += 1; // insert #1

10 } // insert #1
11 year += 1;
12 }
13 else {
14 }
15 days -= 366; // insert #2

This modified program passes the negative test case 366 (year
1980) and one positive test case 1000.

V survives Generations 2, 3, 4, 5 unchanged, but in Generation
6, it is mutated with the following operations: lines 6–10 are deleted,
and “days -= 366” is inserted between lines 13 and 14. The re-
sulting program is shown below:

5 if (days > 366) {
6 // days -= 366; // delete
7 // if (days > 366){ // delete
8 // days -= 366; // delete
9 // year += 1; // delete

10 // } // delete
11 year += 1;
12 }
13 else {
14 days -= 366; // insert
15 }
16 days -= 366;

At this point, V passes all of the test cases, and the search ter-
minates with V as the initial repair. The minimization step is in-
voked to discard unnecessary changes. Compared to the original
program (and using the line numbers from the original), there are
three key changes: c1 = “days -= 366” deleted from line 6;
c2 = “days -= 366” inserted between lines 9 and 10; and c3 =
“days -= 366” inserted between lines 10 and 11. Only c1 and
c3 are necessary to pass all tests, so change c2 is deleted:

5 if (days > 366) {
6 year += 1;
7 }
8 else {
9 // days -= 366; // deleted c2

10 }
11 days -= 366;

This produces the final repair, shown below. This is one of the
many possible repairs that the search might produce.

1 void zunebug_repair(int days) {
2 int year = 1980;
3 while (days > 365) {
4 if (isLeapYear(year)){
5 if (days > 366) {
6 // days -= 366; // repair deletes
7 year += 1;
8 }
9 else {

10 }
11 days -= 366; // repair inserts
12 } else {
13 days -= 365;
14 year += 1;
15 }
16 }
17 printf("current year is %d\n", year);
18 }

Figure 1 shows how the average fitness of the population changes
over time in one GP trial. In this run, we used five positive test cases
(weight 1 each) and two negative test cases (weight 10 each). Also
shown in Figure 1 is the fitness trajectory of the primary repair V

Figure 1: Evolution of the Zune bug repair for one successful
GP trial. The darker curve plots the average fitness of the pop-
ulation, and the lighter curve plots the fitness of the individual
V that becomes the primary repair.

beginning with Generation 1, in which V is the original program,
and continuing up to Generation 7, when the primary repair is dis-
covered.

3.2 Other Repairs
We tested the method on ten programs in addition to the Zune

bug, generating repairs in every case. These results are summa-
rized in Table 1; portions of this figure are reproduced from [23].
The results show that GP can automatically discover repairs for a
wide variety of documented bugs in production C programs. The
results raise many interesting questions about how the repairs are
discovered by GP, test case selection, scalability to larger problems,
and repair quality. We address the first three of these issues in the
following subsections and return to the question of repair quality in
Section 5.

3.3 The Role of Crossover
Crossover is an important search operator in GP, creating new in-

dividuals by recombining partial solutions (subtrees) from different
individuals. Our original implementation described in Section 2.3
does not take advantage of the potential power of crossover because
individuals are always crossed back to the original parent program.
In Table 1 we report data comparing the performance of this im-
plementation with a traditional GP crossover operator, which takes
two individuals as input, chooses a random position (i.e., statement)
from each one, swaps their contents, and returns two new geno-
types.

Although the data are not conclusive, the two implementations
appear to be comparable: each outperforms the other in some in-
stances. A potential explanation of these results is that crossover is
not contributing enough to the search for it to matter, regardless of
which version we use. We explore this question in Section 3.5.

3.4 Varying the Number of Test Cases
The results in Table 1 typically involve six test cases, which re-

stricts the fitness function to six discrete values. This could limit
the complexity of repair that can be evolved as it provides a rela-
tively coarse signal to GP. Also, programs may have more critical
functionality than a few test cases can capture. Typically, programs
have too many test cases rather than too few, and test case selec-
tion and time-aware test suite prioritization are active research ar-
eas (e.g., [21]).

Figure 2: Evolution of the Zune bug repair with 20 positive test
cases and 4 negative test cases, all equally weighted. The boxes
represented the average over 70 distinct trials; the error bars
represent one standard deviation.

In this section, we ask how GP performance changes when more
test cases are used. Figure 2 shows the averaged results of 70 dis-
tinct trials on the Zune bug, using a fitness function with 24 test
cases: 20 positive test cases and 4 negative test cases. The error
bars represent one standard deviation.

Ideally, the test cases would be independent. In this case they
were selected by taking the original five (which were 1000, 2000,
3000, 4000, and 5000) and adding the following: one arbitrary
negative number (-100); one negative number that if it were pos-
itive would cause the program to hang (-366); one extremely large
number (100000000); selecting several arbitrary numbers near leap
years and then finding the numbers around those dates that exercise
the bugs. The four negative testcases include the original bug (that
caused all the Zunes to crash in December) as well as several other
leap years: 1980 (i.e., day 366), 1984, and 2012.

Unsurprisingly, early generations have fitness values with high
variance, and in later generations the variance decreases. The orig-
inal program passes the positive test cases but fails the negative test
cases; it thus has a fitness of 20. Note that over all generations,
the average fitness is below the baseline of 20, indicating that the
majority of individuals are worse than the original program. Thus,
the primary repair is discovered by first losing fitness and then re-
gaining it on the way to the global optimum.

Intuitively, additional test cases could reduce success rate by
overly constraining the search space. However, the opposite hap-
pened in this example. Using seven test cases, the average success
rate is 72%, while the average success rate using 24 test cases is
75%. However, adding test cases does dramatically increase the to-
tal running time of the algorithm: with seven test cases, the average
time to discover the primary repair is 56.1 seconds; with 24, this
time increases to 641.0 seconds. This makes sense: Every fitness
evaluation potentially involves running all of the test cases. There-
fore, in general, we prefer a fitness function with a small number
of test cases.

3.5 Genetic Operators
There are several unusual features of our implementation. This

section studies the relative contribution of the different operators
and estimates how many genetic changes are needed to accomplish
a repair. Table 2 reports results for several aspects of the GP search
for a representative sample of the programs we have repaired, av-
eraged over 20 trials.

The second column reports the percentage of unique program

Stmt Nodes / Pos/Neg Weighted Crossover Trad. Crossover Final
Program Version Lines of Code Test cases Path Length Success Success Repair
zune example 14 / 28 5/2 1.1 71% 58% 4
gcd example 10 / 22 5/1 1.3 54% 24% 2
uniq ultrix 4.3 81 /1146 5/1 81.5 100% 100% 4
look-u ultrix 4.3 90 /1169 5/1 213.0 99% 100% 11
look-s svr4.0 1.1 100 /1363 5/1 32.4 100% 100% 3
units svr4.0 1.1 240 /1504 5/1 2159.7 7% 5% 4
deroff ultrix 4.3 1604 /2236 5/1 251.4 97% 97% 3
nullhttpd 0.5.0 1040 /5575 6/1 768.5 36% 47% 5
indent 1.9.1 2022 /9906 5/1 1435.9 7% 34% 2
flex 2.5.4a 3635 /18775 5/1 3836.6 5% 4% 3
atris 1.0.6 6470 /21553 2/1 34.0 82% 82% 3

Table 1: Program repairs for eleven programs. “Stmt Nodes” gives the total number of statement nodes in the AST (see Section 2.1),
and “Lines of Code” is a more traditional measure of program size. “Pos/Neg Test cases” lists the number of positive and negative
test cases used in the fitness function. “Weighted Path Length” is described in Section 2.1. The “Crossover” and "Trad. Crossover"
columns give the percentage of trials that produced a successful repair, for the crossover implementation described in Section 2.3
and the traditional GP crossover operator (Section 3.3 respectively. “Final Repair” gives the size of the repair as represented by the
Unix diff utility, measured in lines.

variants that fail to compile. We memoize results so as to avoid
recompiling a program that has already failed, which is why the
numbers look so low.

The remaining columns report data on the number of genetic op-
erations per fitness evaluation and per successful repair. The av-
erage number of genetic operations per fitness evaluation is 2.19
(sum of Cols. 3, 4, 5, and 7), and the average number of opera-
tions to produce a successful repair (sum of Cols. 8, 9, 10, and
12) is 4.63. Summing over all individuals in the population (40)
and considering that a repair is discovered on average within 3.6
generations (Col. 13), the search on average requires 667 genetic
operations to discover the primary repair. When we consider the in-
dividual operations, it is difficult to discern a clear pattern and draw
definite conclusions about the relative importance of the different
operators. For example, the data suggest that the Delete operator is
the most effective. However, its average is skewed by one example:
indent.)

Overall, however, we can conclude that GP is routinely discov-
ering successful repairs with a surprisingly small amount of search.
This suggests that much of the cleverness in repairing bugs arises
from the problem representation, the fitness function, and the min-
imization step. And, it raises the question about how well the ap-
proach will scale up to more complex problems, which we address
next.

3.6 GP Performance and Scalability
We first consider the relative execution times of various portions

of the algorithm. The experiments were conducted on a quad-core 3
GHz machine; with a few exceptions, the process was CPU-bound.
The GP prototype is itself single-threaded, with only one fitness
function evaluation at a time, during a fitness evaluation all test
cases are executed in parallel.

On average, 5%± 7% of the time was spent manipulating inter-
nal representations to perform crossover operations; 3% ± 3% of
the time was similarly spent on mutation operations; 10% ± 14%
of the time was spent on computing the fitness function as well as
pretty-printing and memoizing the AST; 22% ± 18% of the time
was spent executing positive test cases, 33% ± 18% of the time
was spent executing negative test cases, 27% ± 13% of the time
was spent calling gcc. The ± figures indicate one standard devia-
tion: the times spent manipulating internal representations (i.e., on

Figure 3: GP search time scales with execution path size. Data
are shown for 11 programs successfully repaired by GP. The
x-axis is the natural logarithm of the weighted path length,
and the y-axis shows the natural logarithm of the total num-
ber of fitness evaluations performed before the primary repair
is found (averaged over 100 runs).

the GP algorithm) were typically in the noise, with pretty-printing,
compiling and evaluating test cases as the dominant time costs. An
average run took 190 seconds in total.

In order to assess the practicality of this approach, we need to
know how the algorithm scales with problem size, and we need to
know the expected size of the problems we would want to solve.

Figure 3, plots weighted path length against search time, mea-
sured as the average number of fitness evaluations until the first
repair. On a log-log scale, the relationship is roughly linear with
slope 1.26 (90% confidence: [0.90, 1.63]) Although we do not
have enough data to draw strong conclusions, the plot suggests that
search time may scale as a power law of the form y = axb where
b is the slope of the best fit line (1.26) and b = 1 would indicate
that search time grew linearly. This is encouraging because it sug-
gests that search time grows as a small polynomial of the weighted
execution path and not as an exponential.

A second question concerns the size distribution of bugs. In
short, what is the expected length of the execution path for bugs
that the GP might be expected to repair? Although we do not have

Program % Don’t Genetic Ops per Fitness Eval. Genetic Ops per Repair Generations
Compile Ins Del Swaps Muts Xover Ins Del Swaps Muts Xovers per Repair

zune 5.33 0.36 0.27 0.38 0.72 0.27 2.50 0.50 0.00 2.25 2.25 3.75
gcd 3.70 0.53 0.08 0.10 0.66 0.34 3.75 0.00 0.00 3.00 1.75 3.50
uniq 25.37 0.29 0.53 0.25 0.76 0.23 0.00 1.67 0.33 1.17 0.67 1.83
look-u 31.73 0.44 0.95 0.48 0.95 0.05 0.22 1.78 0.22 1.00 0.00 1.00
look-s 38.72 0.49 0.71 0.72 0.93 0.07 0.60 1.20 0.60 1.40 0.40 1.60
units 12.85 0.16 0.16 0.14 0.54 0.46 1.67 1.00 0.67 4.33 3.17 6.33
deroff 61.10 1.10 1.34 1.05 0.81 0.19 0.00 4.67 0.00 1.00 0.00 1.00
nullhttpd 57.93 1.27 1.24 1.44 0.62 0.38 0.00 4.50 0.00 1.25 0.25 7.54
indent 65.07 1.49 1.52 1.61 0.56 0.43 2.00 8.17 1.33 2.50 0.17 5.17
flex 37.14 0.40 0.41 0.40 0.73 0.27 0.00 2.80 0.00 1.20 0.00 1.20
atris 25.10 0.34 0.33 0.20 0.72 0.28 0.00 2.00 0.00 1.00 0.00 6.40
Average 32.19 0.62 0.68 0.62 0.73 0.27 0.98 2.57 0.29 1.83 0.79 3.57

Table 2: GP Operators: The “% Don’t Compile” column reports the percentage of unique program variants that failed to compile.
The “Genetic Ops per Fitness Eval” columns (Insertions, Deletions, Swaps, Mutations, and Crossovers) show the average number of
genetic changes per individual between fitness evaluations for each evaluated program variant, in units of genetic operations. Note
that one Mutation typically involves multiple Insertions, Deletions and/or Swaps (see Section 2.3). The “Genetic Ops per Repair”
columns report the average number of times each type of evolutionary operation was used in the evolution of the first primary repair
discovered in each successful program run. The last column gives the mean number of generations spent to produce each successful
instance.

solid data on this question, we note that in 2004 Van Belle docu-
mented the size distribution of revisions checked in to several large
open-source repositories and discovered that it resembles a power
law distribution [9, 10]. Although he was unable to conclude ex-
actly which distribution best fit his data, the trend showed that there
were many more small changes than large ones. This is an impor-
tant area for future work, but if most bug repairs turn out to be
localized to a single function, we could be much more optimistic
about the practicality of the GP approach.

4. RELATED WORK
To our knowledge, GP has not previously been used to evolve

off-the-shelf legacy software. Arcuri [3, 4, 5] proposed the idea
of using GP to automate the repair of software bugs, demonstrat-
ing the idea on a hand-coded example of the bubble sort algorithm.
However our experiments appear to be the first to report results on
real programs with real bugs. Our approach differs in several de-
tails from Arcuri’s. For example, we do not rely on formal specifi-
cations; we constrain the search space to regions where the defects
occur instead of evolving the entire program tree; and we control
code bloat once at the end of the search rather than incrementally.
Localizing the search space allows the search to scale to large pro-
grams ,and despite recent advances in specification mining [15],
formal specifications are rarely available in practice. For exam-
ple, none of the experimental programs used in this paper have
formal specifications available. Several aspects of Arcuri’s work
could be combined with ours, including his use of co-evolutionary
techniques to select test cases.

Previous work on automatic patch generation used the finite state
machine structure of formal safety specifications to generate re-
pairs [22]. The GP approach reported here addresses some of the
limitations of this previous work. First, we introduced positive test
cases to prevent repairs that sacrifice functionality of the original
program. Second, the GP approach can handle a wider range of
defects, for instance repairing infinite loops such as the Zune bug.
Third, the GP approach does not rely on formal specifications of
the policy being violated by the fault.

Demsky et al. [12] describe a technique for data structure re-
pair. Given a formal specification of data structure consistency,

run-time monitoring code is inserted that “patches up” inconsistent
state so that a buggy program can continue to execute if the data
structures ever become inconsistent. This technique does not mod-
ify program source code in a user-visible way, and it is systematic
rather than evolutionary. As a result, it is unclear how to evaluate
the quality of the repair, and repaired programs continue to incur
the run-time overhead. Finally, this technique targets only errors
that corrupt data structures—it does not address the full range of
logic errors. Our techniques are complementary: In cases where
runtime data structure repair does not provide a viable long-term
solution, it might enable the program to continue to execute while
our technique searches for a long-term repair.

5. DISCUSSION AND CONCLUSIONS
The results reported here demonstrate that GP can be applied to

the problem of bug repair in legacy C programs. To date, GP has
succeeded at every repair task we have attempted, but as can be seen
in Table 1 this is only eleven programs. Although encouraging, the
results raise many interesting questions, which we hope to address
in future work. For example, we are interested in how much re-
pairs vary after minimization, and how repair quality compares to
human-engineered solutions. In our experiments to date, most re-
pairs look identical after the minimization step. There are several
interesting questions related to the GP component of the process,
for example: Is crossover essential to the search? Is it sufficient to
control code bloat at the end of the run? Are we using the opti-
mal GP design? Would a multi-objective fitness function improve
results? Are we using optimal parameter settings? Because the pro-
cess proved so successful initially, we have not experimented with
parameter values, selection strategies, and operator design. These
all could almost certainly be improved. Similarly, there are many
ways that the fitness function design could be enhanced, say by dif-
ferent weightings on the test cases or by dynamically choosing test
cases to be included in the fitness function.

Beyond these immediate steps, there are other areas for more
ambitious future work. For example, we plan to develop a generic
set of repair templates so the GP has one source of new code to
use in mutation, beyond those statements that happen to be in the
program being repaired. Another possibility is to use more sophis-

ticated bug localization techniques (e.g., [6]) to help control the
size of the weighted execution path. We could potentially extend
the representation to include data structure definitions and variable
declarations. We are also interested in the question of code bloat
and whether our two strategies for dealing with it (using execution
paths and minimizing the primary repair) could be applied to other
GP settings. Finally, we are interested in testing the method on
more sophisticated errors such as race conditions and in learning
more about bugs that need to be repaired, such as their size and
distribution, and how we might identify which ones are candidates
for the GP technique.

The dream of automatic programming has eluded computer sci-
entists for at least 50 years. Although the methods described in this
paper do not evolve new programs from scratch, they do show how
to evolve legacy software to repair existing faults. However, our
success at repairing bugs automatically may say as much about the
state of today’s software as it says about the efficacy of our method.
In today’s environments, it is exceedingly difficult to understand an
entire software package, test it adequately, or to localize the source
of an error. In this context, it should not be surprising that program-
ming has a large trial and error component, and that many bugs are
repaired by copying code from another location and pasting it in
to another. This is not so different from the approach we have de-
scribed here.

This research was supported in part by National Science Founda-
tion Grants CCF 0621900, CCR-0331580, CNS 0627523 and CNS
0716478, Air Force Office of Scientific Research grant FA9550-
07-1-0532, as well as gifts from Microsoft Research. No official
endorsement should be inferred. The authors thank Cris Moore for
help finding the Zune code.

6. REFERENCES
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.

Compilers: Principles, Techniques, and Tools (second
edition). Pearson Education, 2006.

[2] R. Al-Ekram, A. Adma, and O. Baysal. diffX: an algorithm
to detect changes in multi-version XML documents. In
Conference of the Centre for Advanced Studies on
Collaborative research, pages 1–11. IBM Press, 2005.

[3] A. Arcuri. On the automation of fixing software bugs. In
Proceedings of the Doctoral Symposium of the IEEE
International Conference on Software Engineering, 2008.

[4] A. Arcuri, D. R. White, J. Clark, and X. Yao. Multi-objective
improvement of software using co-evolution and smart
seeding. In Proceedings of the International Conference on
Simulated Evolution And Learning, pages 61–70, 2008.

[5] A. Arcuri and X. Yao. A novel co-evolutionary approach to
automatic software bug fixing. In IEEE Congress on
Evolutionary Computation, 2008.

[6] T. Ball, M. Naik, and S. K. Rajamani. From symptom to
cause: localizing errors in counterexample traces. SIGPLAN
Not., 38(1):97–105, 2003.

[7] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. In SPIN Workshop
on Model Checking of Software, volume 2057 of Lecture
Notes in Computer Science, pages 103–122, May 2001.

[8] BBC News. Microsoft zune affected by ‘bug’. In
http://news.bbc.co.uk/2/hi/technology/
7806683.stm, Dec. 2008.

[9] T. V. Belle. Modularity and the Evolution of Software
Evolvability. PhD thesis, University of New Mexico,
Albuquerque, NM, 2004.

[10] T. V. Belle and D. H. Ackley. Code factoring and the
evolution of evolvability. In GECCO ’02: Proceedings of the
Genetic and Evolutionary Computation Conference, pages
1383–1390, San Francisco, CA, USA, 2002. Morgan
Kaufmann Publishers Inc.

[11] R. V. Binder. Testing object-oriented systems: models,
patterns, and tools. Addison-Wesley Longman, 1999.

[12] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H.
Perkins, and M. Rinard. Inference and enforcement of data
structure consistency specifications. In International
Symposium on Software Testing and Analysis, pages
233–244, 2006.

[13] B. Demsky and M. C. Rinard. Automatic data structure
repair for self-healing systems. In Object-Oriented
Programming, Systems, Languages, and Applications. 2003.

[14] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff.
A sense of self for unix processes. In IEEE Symposium on
Security and Privacy, pages 120–128, 1996.

[15] M. Gabel and Z. Su. Symbolic mining of temporal
specifications. In International Conference on Software
Engineering, pages 51–60, 2008.

[16] D. Hovemeyer and W. Pugh. Finding bugs is easy. In
Companion to the conference on Object-oriented
programming systems, languages, and applications, pages
132–136, 2004.

[17] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. In Programming
Language Design and Implementation, June 9–11 2003.

[18] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil:
An infrastructure for C program analysis and transformation.
In International Conference on Compiler Construction,
pages 213–228, Apr. 2002.

[19] T. M. Pigoski. Practical Software Maintenance: Best
Practices for Managing Your Software Investment. John
Wiley & Sons, 1996.

[20] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM Transactions on Computer
Systems, 15(4):391–411, 1997.

[21] K. Walcott, M. Soffa, G. Kapfhammer, and R. Roos.
Time-aware test suite prioritization. In International
Symposium on Software Testing and Analysis, pages 1–12,
2006.

[22] W. Weimer. Patches as better bug reports. In Generative
Programming and Component Engineering, pages 181–190,
2006.

[23] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic programming.
In International Conference on Software Engineering, 2009.

[24] A. Zeller. Yesterday, my program worked. Today, it does not.
Why? In Foundations of Software Engineering, pages
253–267, 1999.

[25] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Trans. Software Eng.,
28(2):183–200, 2002.

